Exercise 75

Find the parabola with equation $y=a x^{2}+b x$ whose tangent line at $(1,1)$ has equation $y=3 x-2$.

Solution

The tangent line at $(1,1)$ has a slope of 3 . Take the derivative of the parabola equation.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(a x^{2}+b x\right) \\
& =\frac{d}{d x}\left(a x^{2}\right)+\frac{d}{d x}(b x) \\
& =a \frac{d}{d x}\left(x^{2}\right)+b \frac{d}{d x}(x) \\
& =a(2 x)+b(1) \\
& =2 a x+b
\end{aligned}
$$

Use the fact that at $x=1$, the slope of the parabola is 3 .

$$
\begin{equation*}
y^{\prime}(1)=2 a+b=3 \tag{1}
\end{equation*}
$$

Also, use the fact that at $x=1, y=1$.

$$
\begin{equation*}
y(1)=a(1)^{2}+b(1)=a+b=1 \tag{2}
\end{equation*}
$$

Solve equations (1) and (2) for a and b.

$$
a=2 \quad b=-1
$$

Therefore, the parabola with equation $y=a x^{2}+b x$ whose tangent line at $(1,1)$ has equation $y=3 x-2$ is

$$
y=2 x^{2}-x .
$$

